General · Language · Media

Big sim’s – visualizing the universe!

Taking all-sky surveys / maps to another 10^n level of visualization …

So much of modern cosmology depends on the discovery of the cosmic microwave background (CMB) radiation in 1965.

Wiki: “Any proposed model of the universe must explain this radiation.”

Since then, advances in the tools to measure and analyze that faint, relic radiation have refined our perspective on cosmic origins. Studying the most subtle fluctuations in the CMB. Evidence of the Big Bang model. A consistency check (challenge) for the Standard Model.

Wiki: List of cosmic microwave background experiments [link]

Supercomputers and simulations to the max. Beyond galactic simulations in this case (below), which uses data from the Planck spacecraft.

Wiki: Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013, which mapped the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and small angular resolution.

Planck has defined the most precise measurements of several key cosmological parameters, including the average density of ordinary matter and dark matter in the Universe and the age of the universe.

This Phys.org article provides an overview of how Planck’s 2015 data release [link] has been used to simulate a virtual universe. The various derived cosmological parameters [link].

No, not something like the quintillions of worlds (planets) of the No Man’s Sky video game’s procedurally generated universe; but data visualization of large-scale structures. The cosmic shape of dark matter.

Data reduction and analysis of the CMB is complicated – both the physics and math and computation. The chain of dependencies and well-established assumptions in this model are far beyond my ken. Yet, a useful vehicle for exploring some fundamental questions. Communicating the cosmos.

• Phys.org > “Largest virtual universe free for anyone to explore” by Center for Computational Astrophysics (September 10, 2021)

[Article includes YouTube video.]

(quote) Uchuu (meaning “outer space” [universe] in Japanese) is the largest and most realistic simulation of the universe to date. The Uchuu simulation consists of 2.1 trillion particles in a computational cube an unprecedented 9.63 billion light-years to a side.

Uchuu focuses on the large-scale structure of the universe: mysterious halos of dark matter that control not only the formation of galaxies, but also the fate of the entire universe itself. The scale of these structures ranges from the largest galaxy clusters down to the smallest galaxies. Individual stars and planets aren’t resolved, so don’t expect to find any alien civilizations in Uchuu. … Uchuu simulates the evolution of matter over almost the entire 13.8 billion year history of the universe from the Big Bang to the present.

… the research team used high-performance computational techniques to compress information on the formation and evolution of dark matter haloes in the Uchuu simulation into a 100-terabyte catalog. This catalog is now available to everyone on the cloud in an easy to use format

• Skies & Universes > Uchuu Simulations

See also:

• Universe Today > “Researchers Generate an Entire Virtual Universe and Make it Available for Download (if you Have 100 Terabytes of Free Hard Drive Space)

Related posts

Star bright, first light — fingerprint hunt

Age of universe — implications?

Defining a universe — how many constants?

Cosmological fact and fiction

One thought on “Big sim’s – visualizing the universe!

  1. Does the universe have a color?

    Looking at the range of electromagnetic radiation, not just the visible spectrum, “the researchers used a color-matching computer program to convert the cosmic spectrum into a single color visible to humans.”

    • Space.com > “What color is the universe?” by Harry Baker (August 25, 2021) – “Cosmic latte” …

    (quote) In 2002, Baldry [Ivan Baldry, a professor at the Liverpool John Moores University Astrophysics Research Institute in the U.K.] and Karl Glazebrook, a distinguished professor at the Centre for Astrophysics and Supercomputing at the Swinburne University of Technology in Australia, co-led a study published in The Astrophysical Journal that measured the light coming from tens of thousands of galaxies and combined it into a singular spectrum that represented the entire universe.

    In 2002, Australia’s 2dF Galaxy Redshift Survey — which was the largest survey of galaxies ever carried out at the time — captured the visible spectra of more than 200,000 galaxies from across the observable universe. By combining the spectra of all these galaxies, Baldry and Glazebrook’s team was able to create a visible light spectrum that accurately represented the entire universe, known as the cosmic spectrum.

    The team determined that the average color of the universe is a beige shade not too far off from white.

Comments are closed.